- Дренажные (грязевые) для перекачки сточных вод;
- Насосы масляного хозяйства (перекачка масла, очистка и т.д.);
- Насосы для прочистки трубок конденсаторов и бойлеров;
- Насосы для химической промывки поверхностей нагрева котлов;
- Насосы - дозаторы системы водоподготовки;
- Насосы пожарные, хозяйственные, разные.
К насосам, непосредственно влияющим на надежность и экономичность работы ТЭС, относят питательные, конденсатные, сетевые и багерные. Эти же насосы работают в наиболее трудных условиях из-за особенностей рабочего процесса на ТЭС и требований, предъявляемых к их надежности и экономичности.
Примеры маркировки насосов ТЭС
Назначение насоса
|
Пример маркировки
|
Примечания
|
Насосы питательные
|
9Ц12
5Ц10
ПЭ-270-150
ОВПТ-270
ПЭ-250-185
ПЭ-3 80-200
ПЭ-720-200
ПЭ-600-320
ПЭН-600-320
ПТН-1150-340
ОСПТ-1150-340
|
Давление пара до 10 МПа
Турбопривод
Давление пара до 13 МПа
С гидромуфтами
Давление пара до 24 МПа
Турбопривод
|
Конденсатные насосы
|
Кс-12
КсД-120-155
КсВ-500-85
ЦН-1000-220
|
Насосы первого подъема
Насосы двухстороннего входа
Насосы вертикального
исполнения
Насосы второго подъема
|
Сетевые насосы
|
СЭ-500-70
|
|
Предвключенные насосы (бустерные)
|
ПД-1600-180
|
Устанавливаются перед питательными насосами
|
Циркуляционные насосы
|
О-3000-20
ОП-2500-30
|
Осевые
С поворотными лопастями
|
Питательные насосы

Питательные насосы – применяются для подачи воды в паровые котлы. Их особенность – работа с высокими напорами и температурой перекачиваемой среды. Конструктивно выполнены по многоступенчатой схеме.
Конденсатные насосы

Конденсатные насосы – осуществляют возврат конденсата пара в систему регенеративного цикла. Требования к насосам – кавитационная устойчивость и широкое изменение напора. Конструктивно выполнены по многоступенчатой схеме, при этом первая ступень выполняется с увеличенным сечением входа и из кавитационно-устойчивых материалов.
Циркуляционные насосы

Циркуляционные насосы – применяются для подачи охлаждающей среды в системах охлаждения. Требования к ним высокие подачи при низких напорах. Обычно применяются насосы типа «Д», «В» и осевые.
Химические насосы

Химические насосы - Обладают устойчивостью к действию агрессивной химической среды. Выполнены из стойких материалов, пластмассы или их стальная поверхность покрыта слоем резины. По конструкции обычно консольного типа.
Шламовые насосы

Шламовые насосы - Насосы для подачи смеси жидкости и твердых частиц. Должны обладать устойчивостью к истиранию. Разделяются на песковые насосы «ПН» (для перекачки смесей с твердыми включениями размером 2-
15 мм), шламовые насосы «ШН» (размер частиц до 2 мм) и землесосы (для перекачки пульпы – смеси воды с землей). Конструктивно выполнены как консольные насосы, проточная часть изготовляются из твердых чугунов.
Технологический процесс преобразования теплоты в электроэнергию на паротурбинной ТЭС
Тепловые электрические станции (ТЭС) вырабатывают и реализуют потребителям электрическую энергию и тепловую энергию. В качестве топлива ТЭС используют газ, уголь, торф, мазут, и прочие энергоресурсы.
По технологии ТЭС классифицируют на паротурбинные, газотурбинные, парогазовые, газопоршневые.
Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента:
Энергетический котел
Энергетический котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. Питательная вода протекает по трубной системе, расположенной внутри котла. Далее нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения и по одному или нескольким трубопроводам подается в паровую турбину
Турбоагрегат
Турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления, преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.
Конденсатор
Конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;
Питательный насос
Питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной.
Таким образом, в ПТУ рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию.
Принципиальная технологическая схема паротурбинной ТЭС, работающей на газе

Технологический процесс преобразования теплоты в электроэнергию на паротурбинной ТЭС
- Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу (на рисунке не показан), к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер, и он подается к горелкам 2.
- Собственно котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения. Внутренняя часть топки свободна, и в ней происходит горение топлива газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку — камеру, в которой происходит горение топлива. Стены топки облицованы экранами 19 — трубами, к которым подается питательная вода из экономайзера 24. На схеме изображен так называемый прямоточный котел, в экранах которого питательная вода, проходя трубную систему котла только 1 раз, нагревается и испаряется, превращаясь в сухой насыщенный пар.
Широкое распространение получили барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.
- Пространство за топкий котел достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.
- Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин — цилиндров.
- К первому цилиндру — цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2—0,3 МПа (2—3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.
- Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему.
- Пар, покидающий ЦНД турбины, поступает в конденсатор 12 — теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из реки, водохранилища или специального охладительного устройства (градирни).
- Внутри градирни на высоте 10—20 м устанавливают оросительное (разбрызгивающее устройство). Воздух, движущийся вверх, заставляет часть капель (примерно 1,5—2 %) испаряться, за счет чего охлаждается вода, поступающая из конденсатора и нагретая в нем. Охлажденная вода собирается внизу в бассейне, перетекает в аванкамеру 10 (см. рис. 2.2), и оттуда циркуляционным насосом 9 она подается в конденсатор 12. Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор из реки и сбрасывается в нее ниже по течению. Пар, поступающий из турбины в межтрубное пространство конденсатора, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через группу регенеративных подогревателей низкого давления (ПНД) 3 в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация — удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.
- Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД).
- Регенеративный подогрев конденсата в ПНД и ПВД — это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей!), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240—280 °С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата.
- Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140—160 °С и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.
- Если на ТЭС используется твердое топливо, то она снабжается топливоподачей и пылеприготовительной установкой. Прибывающий на ТЭС в специальных вагонах уголь разгружается, дробится до размера кусков 20—25 мм и ленточным транспортером подается в бункер, вмещающий запас угля на несколько часов работы. Из бункера уголь поступает в специальные мельницы, в которых он размалывается до пылевидного состояния. В мельницу непрерывно специальным дутьевым вентилятором подается воздух, нагретый в воздухоподогревателе. Горячий воздух смешивается с угольной пылью и через горелки котла подается в его топку в зону горения.
- Пылеугольная ТЭС снабжается специальными электрофильтрами, в которых происходит улавливание сухой летучей зоны. Зола, образующаяся при горении топлива и не унесенная потоком газов, удаляется из донной части топки и транспортируется на золоотвалы.